- Instructor: admin
- Lectures: 73
- Duration: 24 hours
Categories: Training Packages
:The program aims to
.Provide fundamental knowledge on data science applications and research to the trainees –
.Provide intensive training on utilizing data science tools and programming languages to the trainees –
.Ensure applying best practices of data science teaching and learning methods to the trainees –
-
Live Course
-
Lecture 2.1Training Course Link
-
-
Introduction
-
Lecture 3.1Objectives
-
Lecture 3.2Training Manual
-
-
Session 1 : Introduction to Data Science
-
Lecture 4.1Data Science General Overview
-
Lecture 4.2?What is Pattern Recognition
-
Lecture 4.3Data Mining
-
Lecture 4.4Data Mining Methodology
-
Lecture 4.5Data Mining Techniques
-
Lecture 4.6Types of Data
-
Lecture 4.7Database Systems
-
Lecture 4.8Data Warehouse
-
Lecture 4.9Data Hierarchy
-
Lecture 4.10Practical :Create Data Science Account
-
Lecture 4.11Practical :Create Data Science Experiment
-
-
Session 2:Data Mining Tasks
-
Lecture 5.1Definition of Data Mining Tasks
-
Lecture 5.2Classification
-
Lecture 5.3Regression
-
Lecture 5.4Clustering
-
Lecture 5.5Deviation/Anomaly Detection
-
Lecture 5.6Pattern Discovery
-
Lecture 5.7Association Rules Mining
-
Lecture 5.8Challenging Issues
-
Lecture 5.9Practical: Create Machine Learning Experiment
-
Lecture 5.10Practical : Apply Classification Techniques
-
Lecture 5.11Practical : Visualize and Discuss the Results
-
-
Session 3: Data Issues
-
Lecture 6.1Dataset
-
Lecture 6.2Objects
-
Lecture 6.3Attributes
-
Lecture 6.4Types of Data
-
Lecture 6.5Data Quality
-
Lecture 6.6Practical : Create Experiment Workspace
-
Lecture 6.7Practical : Apply Preprocessing Techniques
-
Lecture 6.8Practical : Visualize and Discuss the Results
-
-
Session 4 :Data Preprocessing
-
Lecture 7.1?Why Data Preprocessing is Important
-
Lecture 7.2Data Preprocessing Tasks
-
Lecture 7.3Correlation Analysis
-
Lecture 7.4Data Transformation
-
Lecture 7.5Data Reduction
-
Lecture 7.6Data Compression
-
Lecture 7.7Data Discretization
-
Lecture 7.8Practical : Open Experiment Workspace
-
Lecture 7.9Practical : Apply classification Techniques
-
Lecture 7.10Practical : Visualize and Discuss the Results
-
-
Session 5 :Data Classification
-
Lecture 8.1Classification and Prediction
-
Lecture 8.2Classification Techniques
-
Lecture 8.3Prediction Techniques
-
Lecture 8.4Classification Task
-
Lecture 8.5Classification Applications
-
Lecture 8.6Overfitting in Classification
-
Lecture 8.7Prediction Task
-
Lecture 8.8Regression
-
Lecture 8.9Practical: Data Prediction: Create Experiment Workspace
-
Lecture 8.10Practical :Data Prediction : Apply Regression Techniques
-
Lecture 8.11Practical : Data Prediction : Visualize and Discuss the Results
-
-
Session 6 :Data Clustering
-
Lecture 9.1Clustering Approaches
-
Lecture 9.2Clustering Applications
-
Lecture 9.3Concepts of Clustering
-
Lecture 9.4Types of Data in Clustering Analysis
-
Lecture 9.5Measuring Similarity between Objects
-
Lecture 9.6Types of Variables in Clustering Analysis
-
Lecture 9.7Types of Clustering Approaches
-
Lecture 9.8Practical Data Clustering :Create Experiment Workspace
-
Lecture 9.9Practical Data Clustering :Apply Clustering Techniques
-
Lecture 9.10Practical Data Clustering :Visualize and Discuss the Results
-
-
Session 7: Deep Learning
-
Lecture 10.1Multiple Layers Neural Network
-
Lecture 10.2Deep Learning Neural Network
-
Lecture 10.3Learning Hierarchical Representations
-
Lecture 10.4Types of Deep Learning Models
-
Lecture 10.5Convolutional Neural Network
-
Lecture 10.6Practical Assessment :Project Instructions
-
Lecture 10.7Practical Assessment : Project Description
-
Lecture 10.8Practical Assessment : Project Report
-
Lecture 10.9Practical Assessment Project Assessment Criteria
-